2. Vector Algebra
Vector basics

Vector: $\mathbf{A}, \mathbf{\bar{A}}$
Magnitude: $|\mathbf{A}|, A$
Scalar: p, ϕ

Types
– Polar vector
 •
– Axial vector
 •
– Unit vector
 •
Vector Algebra

• Addition

\[A + B = \]

• Dot, or scalar, product

\[A \cdot B = AB \cos \theta \]

• E.g. Work=\(F \cdot s \)

• Flow rate through \(dA = V \cdot dA \) or \(V \cdot ndA \)

• \(A \cdot B = B \cdot A \)

\[A \cdot A = A^2 \]

\[A \cdot B = 0 \text{ if perpendicular} \]
Vector Algebra

- Cross, or vector, product
 \[\mathbf{A} \times \mathbf{B} = \mathbf{A}B \sin \theta \mathbf{e} \]

- \[\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} \]
- \[\mathbf{A} \times \mathbf{A} = 0 \]
- \[\mathbf{A} \times \mathbf{B} = 0 \text{ if } \mathbf{A} \text{ and } \mathbf{B} \text{ parallel} \]
Vector Algebra – Triple Products

1. \((A \cdot B)C = (B \cdot A)C\)

2. Mixed product \(A \cdot B \times C\)
 - Volume of parallelepiped bordered by \(A, B, C\)
 - May be cyclically permuted
 \(A \cdot B \times C = C \cdot A \times B = B \cdot C \times A\)
 - Acyclic permutation changes sign
 \(A \cdot B \times C = -B \cdot A \times C\) etc.

3. Vector triple product
 - \(A \times (B \times C)\) = Vector in plane of \(B\) and \(C\)
 = ...
Cartesian Coordinates

- Coordinates x, y, z
- Unit vectors i, j, k (in directions of increasing coordinates) are constant
- Position vector $\mathbf{r} = \ldots$
- Vector components $\mathbf{F} = \ldots$

Components same regardless of location of vector
Cylindrical Coordinates

- Coordinates r, θ, z
- Unit vectors \mathbf{e}_r, \mathbf{e}_θ, \mathbf{e}_z (in directions of increasing coordinates)
- Position vector
 $$ \mathbf{R} = $$
- Vector components
 $$ \mathbf{F} = $$

Components not constant, even if vector is constant
Spherical Coordinates

- Coordinates \(r, \theta, \phi \)
- Unit vectors \(\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_\phi \) (in directions of increasing coordinates)
- Position vector \(\mathbf{r} = \)
- Vector components \(\mathbf{F} = \)
Vector Algebra in Components

\[\mathbf{A} \cdot \mathbf{B} = A_1 B_1 + A_2 B_2 + A_3 B_3 \]

\[\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix} \]
Concept of Differential Change In a Vector. The Vector Field.

Scalar field \(\phi = \phi(r, t) \)
Vector field \(\mathbf{V} = \mathbf{V}(r, t) \)

Differential change in vector
- Change in
- Change in
Change in Unit Vectors – Cylindrical System
Change in Unit Vectors – Spherical System

\[\text{change in } e_r = d\theta e_\theta + d\phi \sin \theta e_\phi \]
\[\text{change in } e_\theta = -d\theta e_r + d\phi \cos \theta e_\phi \]
\[\text{change in } e_\phi = -d\phi \sin \theta e_r - d\phi \cos \theta e_\theta \]

See “Formulae for Vector Algebra and Calculus”
Example

The position of fluid particle moving in a flow varies with time. Working in different coordinate systems write down expressions for the position and, by differentiation, the velocity vectors.

Cartesian System

Cylindrical System

... This is an example of the calculus of vectors with respect to time.
Vector Calculus w.r.t. Time

• Since *any* vector may be decomposed into scalar components, calculus w.r.t. time, only involves *scalar* calculus of the components.

\[
\frac{\partial (A + B)}{\partial t} = \frac{\partial A}{\partial t} + \frac{\partial B}{\partial t}
\]

\[
\frac{\partial (A \cdot B)}{\partial t} = A \frac{\partial B}{\partial t} + \frac{\partial A}{\partial t} \cdot B
\]

\[
\frac{\partial (A \times B)}{\partial t} = A \times \frac{\partial B}{\partial t} + \frac{\partial A}{\partial t} \times B
\]

\[
\int (A + B)dt = \int A dt + \int B dt
\]