Geometric and probabilistic descriptions of chaotic phase space transport: stirring by braiding of almost-cyclic sets

Shane Ross
Engineering Science and Mechanics, Virginia Tech
www.shaneross.com

In collaboration with Francois Lekien, Mark Stremler, Piyush Grover, Carmine Senatore, Phanindra Tallapragada, Shibabrat Naik, Sam Raben, Amir BozorgMagham, Pankaj Kumar

BIRS Workshop, Open Dynamical Systems, April 2012
Motivation: complex fluid motion, mixing, and control
Motivation: complex fluid motion, mixing, and control

Atmosphere over North America. Lagrangian coherent boundaries: orange = repelling, blue = attracting
Motivation: complex fluid motion, mixing, and control

Table top fluid experiment. Lagrangian coherent boundaries: red = repelling, blue = attracting
Motivation: complex fluid motion, mixing, and control

- Selectively 'jumping' between coherent sets using control
- Moving between mobile subregions of different finite-time itineraries
Motivation: complex fluid motion, mixing, and control

- Selectively 'jumping' between coherent sets using control
- Moving between mobile subregions of different finite-time itineraries
Motivation: complex fluid motion, mixing, and control

- Selectively 'jumping' between coherent sets using control
- Moving between mobile subregions of different finite-time itineraries
Motivation: complex fluid motion, mixing, and control

- Selectively ’jumping’ between coherent sets using control
- Moving between mobile subregions of different finite-time itineraries

green=uncontrolled, red=controlled
Stirring fluids with solid rods

- Turbulent mixing: spoon in coffee
- Laminar mixing: 3 ‘braiding’ rods in glycerin
Topological chaos through braiding of stirrers

Topological chaos is ‘built in’ the flow due to the topology of boundary motions.

R_N: 2D fluid region with N stirring ‘rods’

- stirrers move on periodic orbits
- stirrers = solid objects or fluid particles
- stirrer motions generate diffeomorphism $f: R_N \rightarrow R_N$
- stirrer trajectories generate braids in 2+1 dimensional space-time
Thurston-Nielsen classification theorem

- A stirrer motion f is isotopic to a stirrer motion g of one of three types (i) finite order (f.o.): the nth iterate of g is the identity (ii) pseudo-Anosov (pA): g has Markov partition with transition matrix A, topological entropy $h_{TN}(g) = \log(\lambda_{PF}(A))$, where $\lambda_{PF}(A) > 1$ (iii) reducible: g contains both f.o. and pA regions

- h_{TN} computed from ‘braid word’, e.g., $\sigma_1^{-1}\sigma_2$

- $\log(\lambda_{PF}(A))$ provides a lower bound on the true topological entropy
Topological chaos in a viscous fluid experiment

Move 3 rods on ‘figure-8’ paths through glycerin

- stirrers move on periodic orbits in two steps
- Thurston-Nielsen theorem gives a lower bound on stretching:
 \[\lambda_{TN} = \frac{1}{2} (3 + \sqrt{5}) \]
 \[h_{TN} = \log(\lambda_{TN}) = 0.962 \ldots \]

non-trivial material lines grow like
\[l \sim l_0 \lambda^n \]
\[\lambda \geq \lambda_{TN} \]
Topological chaos in a viscous fluid experiment

finite order

pseudoAnosov

\(R_+ \)

\(L_+ \)

\(\sigma_1 \)

\(\sigma_2 \)

\(\sigma_1^{-1} \)

\(\sigma_2 \)
‘Stirring’ with fluid particles

point vortices in a periodic domain

one rod moving on an epicyclic trajectory

Fluid is wrapped around ‘ghost rods’ in the fluid
– flow structure assists in the stirring
Ghost rods in microfluidics mixer

- Lid-driven cavity flow, periodic vector field

- System has parameter τ_f, which we treat as a bifurcation parameter — critical point $\tau_f^* = 1$

- $t \in [n\tau_f, (n+1)\tau_f/2)$, right two points exchange clockwise
- $t \in [(n+1)\tau_f/2, (n+1)\tau_f)$, left two points exchange counter-clockwise

streamlines for $\tau_f = 1$
tracer blob ($\tau_f > 1$)
Stirring protocol \Rightarrow braid \Rightarrow topological entropy

- Consider period-τ_f map
- For $\tau_f = 1$, period 3 points act as ‘ghost rods’
- Their braid $\Rightarrow h_{TN} = 0.96242$ from TNCT
- Actual $h_{\text{flow}} \approx 0.964$ obtained numerically
- $\Rightarrow h_{TN}$ is an excellent lower bound
Identifying ‘ghost rods’: periodic points

period-τ_f map for τ_f just above 1

- At $\tau_f = 1$, parabolic period 3 points of map
- $\tau_f > 1$, **elliptic / saddle points** of period 3 — streamlines around groups resemble fluid motion around a solid rod \Rightarrow
- $\tau_f < 1$, **periodic points vanish**
Consider $\tau_f < 1$
Identifying ‘ghost rods’?

period-τ_f map for $\tau_f < 1 \Rightarrow$ no ‘obvious’ structure

- Note the absence of any elliptical islands
- No periodic orbits of low period were found
- In practice, even when such low-order periodic orbits exist, they can be difficult to identify
- But phase space is not featureless
Almost-cyclic set approach

- Identify almost-invariant sets (AISs, as discussed in previous talks)
- Relatedly, almost-cyclic sets (ACSs) (Dellnitz & Junge [1999])
- Create box partition of phase space \(\mathcal{B} = \{B_1, \ldots B_q\} \), with \(q \) large
- Consider a \(q \)-by-\(q \) Ulam-Galerkin matrix, \(P \), where

\[
P_{ij} = \frac{m(B_i \cap f^{-1}(B_j))}{m(B_i)},
\]

the transition probability from \(B_i \) to \(B_j \) using, e.g., \(f = \phi_t^T \), computed numerically

- Identify AISs and ACS via spectrum of \(P \)
Identifying ‘ghost rods’: almost-cyclic sets

- For $\tau_f > 1$ case, where periodic points and manifolds exist...
- Agreement between ACS boundaries and manifolds of periodic points
- Known previously\(^1\) and applies to more general objects than periodic points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Identifying ‘ghost rods’: almost-cyclic sets

- For $\tau_f > 1$ case, where periodic points and manifolds exist...
- Agreement between ACS boundaries and manifolds of periodic points
- Known previously1 and applies to more general objects than periodic points, i.e. normally hyperbolic invariant manifolds (NHIMs)

Identifying ‘ghost rods’: almost-cyclic sets

period-τ_f map for $\tau_f < 1 \Rightarrow$ no ‘obvious’ structure

- Return to $\tau_f < 1$ case, where no periodic orbits of low period known
- What are the AISs and ACSs here?
- Consider $P_{t}^{t+\tau_f}$ induced by family of period-τ_f maps $\phi_{t}^{t+\tau_f}$, $t \in [0, \tau_f)$
Identifying ‘ghost rods’: almost-cyclic sets

Top eigenvectors for $\tau_f = 0.99$ reveal hierarchy of phase space structures

v_2

v_3

v_4

v_5

v_6
Identifying ‘ghost rods’: almost-cyclic sets

The zero contour (black) is the boundary between the two almost-invariant sets.

- Three-component AIS made of 3 ACSs of period 3
- ACS effectively replace periodic orbits for TNCT
Identifying ‘ghost rods’: almost-cyclic sets

Almost-cyclic sets stirring the surrounding fluid like ‘ghost rods’ — works even when periodic orbits are absent!

Movie shown is second eigenvector for $P_t^{t+\tau_f}$ for $t \in [0, \tau_f)$
Identifying ‘ghost rods’: almost-cyclic sets

Braid of ACSs gives lower bound of entropy via Thurston-Nielsen
— One only needs approximately cyclic blobs of phase space
— But, theorems apply only to periodic points
Topological entropy vs. bifurcation parameter

h_{TN} shown for ACS braid on 3 strands
Consider change in eigenvector z along continuous branch marked with ‘−□−’ above (from a to f), as τ_f decreases \Rightarrow

zInspired by Junge, Marsden, Mezic [2004]
Bifurcation of ACSs — braid on 13 strands

For example, braid on 13 strands for $\tau_f = 0.92$

Movie shown is second eigenvector for $P_t^{t+\tau_f}$ for $t \in [0, \tau_f)$

Thurson-Nielsen for this braid provides lower bound on topological entropy
Bifurcation of ACSs — braid on 13 strands

(a) Initial state

(b) First half-period

(c) Second half-period

(d) State after 1 period
Bifurcation of ACSs — braid on 13 strands
For various braids of ACSs, the calculated entropy is given, bounding from below the true topological entropy over the range where the braid exists.
Non-autonomous, non-periodic, finite-time setting

- Data-driven, finite-time, non-periodic setting — e.g., from experimental fluid measurements, observations
- Are there, e.g., braids in realistic fluid flows?

LCSs: orange = repelling, blue = attracting
Atmospheric flows: hurricanes

orange = repelling curves, blue = attracting curves

Andrea, first storm of 2007 hurricane season

Atmospheric flows: hurricanes

Andrea at one snapshot; Lagrangian coherent boundaries shown
Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
Atmospheric flows: lobe dynamics to find braids

orange = repelling (stable manifold), blue = attracting (unstable manifold)
Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
Atmospheric flows: lobe dynamics to find braids

Portions of lobes colored; magenta = outgoing, green = incoming, purple = stays out
Atmospheric flows: lobe dynamics to find braids

Sets behave as lobe dynamics dictates \Rightarrow form braid, but no periodicity
Atmospheric flows: Antarctic polar vortex
Atmospheric flows: Antarctic polar vortex

ozone data + Lagrangian coherent boundaries (red = repelling, blue = attracting)
Speculation: trends in eigenvalues/vectors for prediction

- Different eigenvectors can correspond to dramatically different behavior.
- Some eigenvectors increase in importance while others decrease.
- Can we predict dramatic changes in system behavior?
- e.g., splitting of the ozone hole in 2002, using only data before split.
Final words

- Almost-cyclic sets enable application of the TNCT even in the absence of low-order periodic orbits.
 - For engineering systems, can design for mixing using ACSs
 - For natural systems, ghost rod/ACS paradigm may aid interpretation

- Connection between finite-time lobe dynamics and braids

- Bifurcation of phase space structure revealed through bifurcation of AIS/ACSs, braid bifurcations, etc.

- Prediction of dramatic changes in system behavior using changing order of eigenvectors?
The End

For papers, movies, etc., visit:
www.shaneross.com

Related Papers:

