Correspondence Relations Between Deflection, Buckling Load, and Frequencies of Thin Functionally Graded Material Plates and Those of Corresponding Homogeneous Plates

Based on the classical plate theory (CPT), we derive scaling factors between solutions of bending, buckling and free vibration of isotropic functionally graded material (FGM) thin plates and those of the corresponding isotropic homogeneous plates. The effective material properties of the FGM plate are assumed to vary piecewise continuously in the thickness direction except for the Poisson ratio that is taken to be constant. The correspondence relations hold for plates of arbitrary geometry provided that the governing equations and boundary conditions are linear. When the stretching and bending stiffnesses of the FGM plate satisfy a relation, Poisson’s ratio is constant and the boundary conditions are such that the in-plane membrane forces vanish, then there exists a physical neutral surface for the FGM plate that is usually different from the plate mid-surface. Example problems studied verify the accuracy of scaling factors.

Keywords: nonhomogeneous plate, bending, buckling, free vibration, classical plate theory, correspondence relations

1 Introduction

Transversely nonhomogeneous plates with material properties varying through the thickness such as sandwich, laminated, and FGM plates are widely used in engineering structures. An FGM plate can be designed to have a desired variation of material properties in one or more directions. A widely used design has material properties varying only in the thickness direction. We note that Qian and Batra [1] and Liu et al. [2] have analyzed vibrations of a plate with material properties continuously varying in two directions. Whereas, Qian and Batra used a higher-order shear and normal deformation plate theory (HSNDT) and numerically solved the governing equations, Liu et al. provided a Levy-type solution for a rectangular plate with two opposite sides simply supported.

Jha et al. [3] and Swaminathan et al. [4] have reviewed works on bending, buckling and vibration of the FGM plates that have employed the CPT, the first-order shear deformation plate theory (FSDT), the higher-order shear deformation plate theory (HSNDT), the HSDT, and the three-dimensional linear elasticity theory. We note that in most engineering applications, the CPT is used to predict the structural behavior of thin plates. In view of the immense literature on the FGM plates, it is nearly impossible to review all the works here. Thus we limit ourselves to reviewing some of the works on the bending, buckling and free vibration of the FGM plates based on the CPT that are closely related to our work.

Yang and Shen [5] investigated free and forced vibration of in-plane stressed thin rectangular FGM plates resting on a two-parameter elastic foundation by the differential quadrature method (DQM). He et al. [6] studied the shape and vibration control of rectangular FGM plates with integrated piezoelectric sensors and actuators by using the finite element method (FEM) and the CPT. Javaheri and Eslami [7] analyzed buckling of simply supported rectangular FGM plates under different in-plane compressive loads and derived closed form solution for the critical buckling load. Samsam Shariata et al. [8] extended the analytical method of Refs. [5,7] to investigate the critical buckling of simply supported rectangular FGM plates with geometric imperfections and subjected to in-plane compressive loads. Mohammadi et al. [9] derived a Levy type analytical solution for critical buckling of the rectangular FGM plates with two opposite edges simply supported and presented numerical results of the critical buckling load for different boundary conditions. Chi and Chung [10,11] studied static bending of simply supported rectangular FGM plates subjected to transverse distributed loads. Analytical solutions using Fourier series were obtained for Young’s modulus varying in the thickness direction according to power-law, sigmoid, and exponential functions. Through numerical experiments, they showed that the effect of the variation in Poisson’s ratio on the mechanical behavior of the FGM plates is very small. Whereas Poisson’s ratio may not affect global quantities such as frequencies and buckling loads, it influences displacements as shown by Nie and Batra [12] and Zimmerman and Lutz [13].

By using B-splines to discretize the governing differential equation in the space domain, Yin et al. [14] numerically studied the free vibration response of thin rectangular FGM plates by introducing a physical neutral surface. Analytical investigation of the
free vibration response of thin circular and annular FGM plates integrated with two uniformly distributed actuator layers made of piezoelectric materials were carried out by Ebrahimi and Rastgo [15,16]. Mitalaie and Hajabasi [17] analyzed free vibration of FGM thin annular sector plates by using the DQM. Hasani Baferani et al. [18] presented both the Navier and the Levy type solutions for resonant frequencies of thin rectangular FGM plates under various boundary conditions. Vel and Batra [19–21] have provided exact solutions of static deformations, vibrations, and transient thermal stresses induced in the FGM plates using the three-dimensional linear elasticity theory.

Some authors have investigated nonlinear deformations of the thin FGM plates using the CPT and incorporating von Kármán’s nonlinear strain–displacement relations. By using a semi-analytical approach, Yang and Shen [22] studied large deflection and postbuckling response of rectangular FGM plates resting on a two-parameter elastic foundation under transverse and in-plane loads. The nonlinear partial differential equations were solved by a perturbation technique. Nonlinear free vibration behavior of rectangular FGM plates was studied by Woo et al. [23] who used the Fourier series and presented numerical values of the fundamental frequency versus the centroidal amplitude for different boundary conditions. Zhang and Zhou [24] used a physical neutral surface to decouple the stretching–bending deformations in FGM plates and derived equations in terms of the deflection and the stress function similar to those of a homogeneous plate. For infinitesimal deformations, analytical solutions of bending of a clamped circular FGM plate under uniformly distributed load, and of buckling and free vibration of a rectangular FGM plate with simply supported edges were presented. Recently, Batra and Xiao [25] have pointed out that there is no stress tensor that is work conjugate of the von Kármán strain tensor. Thus, one should neither use the principle of minimum potential energy nor use the Hamilton principle to derive governing equations when considering the von Kármán nonlinear strains.

Different from the conventional analyses to find specific solutions for static and dynamic responses of FGM plates by using either analytical or numerical approaches, for static bending of simply supported polygonal FGM plates, Cheng and Batra [26] and Cheng and Kitipornchai [27] presented explicit relations between displacements based on the FSDT and the deflection of a homogeneous Kirchhoff plate. It can be reduced to a proportional relation between deflections of the FGM and the homogeneous Kirchhoff plates by neglecting the shear deformation. Abrate [28,29] investigated the relation between static bending, buckling and free vibration of FGM plates and corresponding homogeneous plates by examining extensive results available in the literature. He showed that the natural frequencies, the in-plane buckling loads, and the deflections of an FGM plate were proportional to those of the corresponding homogeneous plate. Even though these numerical results were obtained using the classical, the FSDT, and the TSDT, he found that the proportionality is generally applicable, the scaling factors depend on the through-the-thickness variation of the elastic modulus, and the extension-bending coupling in governing equations of thin FGM plates based on the CPT can be eliminated by using a new reference surface that is different from the midplane of the plate. However, theoretical investigations have revealed that the proportionality relation between responses of the FGM plates and those of their homogeneous counterparts is not valid when transverse shear deformations are considered. By examining the analytical bending solution of a circular FGM plate given by Reddy et al. [30] based on the FSDT and that presented by Ma and Wang [31] based on Reddy’s TSDT, it can be found that there is no proportional relation between the solutions of the FGM plates and those of the corresponding homogeneous ones. However, Cheng and Batra [32] have shown that the critical buckling load and the vibration frequency for the polygonal FGM plates under in-plane hydrostatic pressure and resting on a Winkler–Pasternak elastic foundation can be expressed in terms of the eigenvalue of the clamped membrane having the shape of the plate. They showed that this correspondence is valid when the polygonal FGM plate’s deformations are governed by either the TSDDT, or the FSDT or the CPT, and whether or not Poisson’s ratio varies through the plate thickness. Furthermore, the plate material could be transversely isotropic with the thickness direction coincident with the axis of transverse isotropy. It seems that all conditions on stiffnesses of inhomogeneous plates that must be satisfied for such correspondence relations to hold may not have been delineated.

In this paper, we use the CPT to analytically derive correspondence relations between solutions for bending, buckling and free vibrations of the FGM plates, and those of the corresponding homogeneous plate (RHP) with the same geometry, loading, and boundary conditions as the FGM plate. This correspondence is valid for arbitrary shaped plates and boundary conditions provided that the governing equations and the boundary conditions are linear. By using the origin of the rectangular Cartesian coordinate system in the plate midsurface, we derive a condition on the plate stiffness for the existence of the physical neutral surface. The significance of the work is that the correspondence relation enables one to solve problems for the FGM plates from the solution of the corresponding problem for the RHP. The correspondence relation is also valid for laminated plates provided that they can be modeled as isotropic, and the governing equations and the boundary conditions are linear.

2 Problem Solutions

2.1 Governing Equations. Consider a thin flat isotropic FGM plate of thickness h, with piecewise continuous variation of material properties in the thickness direction. Without loss of generality, we select a rectangular Cartesian coordinate system (x, y, z) with the x- and the y-axes located in the geometric midplane of the plate, and the z-axis along the normal to the plate midsurface. We assume that material properties of the FGM plate, such as Young’s modulus, E, Poisson’s ratio, , and the mass density, , are piecewise continuous functions over the thickness, and can be described by

\[P(z) = P_0 \psi_p(z) \quad (1) \]

where \(P_0 \) and \(P_s \) denote, respectively, the material property values at the top and the bottom surfaces of the plate, and \(\psi_p(z) \) is a piecewise continuous function of z that satisfies \(\psi_p(-h/2) = 1 \) and \(\psi_p(h/2) = P_t / P_s \) at the bottom and the top surfaces, respectively.

In the CPT the displacement field is assumed to be given by

\[u(x,y,z,t) = u_0(x,y,t) - \frac{\partial w_0}{\partial x} \quad (2a) \]

\[v(x,y,z,t) = v_0(x,y,t) - \frac{\partial w_0}{\partial y} \quad (2b) \]

\[w(x,y,z,t) = w_0(x,y,t) \quad (2c) \]

where \(t \) is time, and \(u, v, w \) are the x, y, and z components of the displacement field, respectively; \(u_0, v_0, \) and \(w_0 \) are the displacement components defined at the geometric mid-surface.

By using the linear strain–displacement relations and Hooke’s law, we obtain the following expressions for the resultant forces and the bending moments:

\[N_x = A_{11} A_{12} 0 \left(\begin{array}{c} \phi_x \\ \phi_y \\ \phi_z \end{array} \right) + B_{11} B_{12} \left(\begin{array}{c} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{array} \right) \]

\[N_y = A_{12} A_{11} 0 \left(\begin{array}{c} \phi_x \\ \phi_y \\ \phi_z \end{array} \right) + B_{12} B_{11} \left(\begin{array}{c} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{array} \right) \]

\[N_{xy} = 0 0 A_{33} \left(\begin{array}{c} \phi_x \\ \phi_y \\ \phi_z \end{array} \right) + 0 B_{33} \left(\begin{array}{c} \kappa_x \\ \kappa_y \\ \kappa_{xy} \end{array} \right) \]
In Eq. (3) the in-plane strains and curvatures are given by
\[
\begin{align*}
\varepsilon_x &= \frac{\partial u}{\partial x} + \frac{\partial v}{\partial x} + \nu \frac{\partial w}{\partial x}, \\
\varepsilon_y &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} + \nu \frac{\partial w}{\partial y}, \\
\gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x},
\end{align*}
\]
and the resultant forces and the bending moments are defined as
\[
\begin{align*}
(N_x, N_y, N_{xy}) &= \int_{-h/2}^{h/2} (\varepsilon_x, \varepsilon_y, \gamma_{xy}) \, dz, \\
(M_x, M_y, M_{xy}) &= \int_{-h/2}^{h/2} (\sigma_x, \sigma_y, \tau_{xy}) \, dz.
\end{align*}
\]
The stiffness coefficients in Eq. (3) have the following expressions:
\[
\begin{align*}
(A_{11}, A_{12}, A_{33}) &= \int_{-h/2}^{h/2} \frac{E}{1-\nu^2} \left(1, \nu, 1-\nu^2 \right) \, dz, \\
(B_{11}, B_{12}, B_{33}) &= \int_{-h/2}^{h/2} \frac{E}{1-\nu^2} \left(1, \nu, 1-\nu \right) \, dz, \\
(D_{11}, D_{12}, D_{33}) &= \int_{-h/2}^{h/2} \frac{E}{1-\nu^2} \left(1, \nu, 1-\nu^2 \right) \, dz.
\end{align*}
\]

2.2 Correspondence Relations. Differentiating both sides of Eqs. (10) and (11), respectively, with respect to \(x\) and \(y\), adding respective sides, and using Eq. (6), we obtain
\[
\nabla^2 \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) = \frac{B_{11}}{A_{11}} \nabla^2 w_0
\]
where \(\nabla^2 = \partial^2/\partial x^2 + \partial^2/\partial y^2\) is the Laplace operator and
\[
\nabla^4 = \nabla^2 \nabla^2.
\]

2.3 Physical Neutral Surface. In the absence of constraints at the boundaries to prevent in-plane movements, the membrane forces will vanish. Thus,
\[
N_i = A_{11} \frac{\partial u}{\partial x} + A_{12} \frac{\partial v}{\partial y} - B_{11} \frac{\partial^2 w_0}{\partial x^2} - B_{12} \frac{\partial^2 w_0}{\partial y^2} = 0
\]
where the constant \(z_0 \) is given by
\[
z_0 = \frac{B_{12} - B_{11}}{A_{11} - A_{12}} = \frac{B_{33}}{A_{33}} = \frac{B}{A_{11}} = \frac{h^{1/2} \gamma_1}{\phi_0} \tag{22}\]

Recalling Eqs. (3) and (5), the relation \(A_{11}B_{12} = A_{12}B_{11} \) implies that the Poisson effect for stretching and stretching–bending coupling deformations is the same.

By integrating Eqs. (21a) and (21b), it is easy to get a general solution for the in-plane displacements
\[
u_0 = z_0 \frac{\partial w_0}{\partial y} + g(x, t) \tag{23}\]

where \(f(y, t) \) and \(g(x, t) \) are arbitrary functions. Substituting Eq. (23) into Eq. (21c) yields
\[
\frac{\partial f(y, t)}{\partial y} = -\frac{\partial g(x, t)}{\partial x} = z_0(t) \tag{24}\]

which gives
\[
\begin{align*}
f(y, t) &= -\overline{z}_1 y + \overline{z}_2, \\
g(x, t) &= -\overline{z}_3 x + \overline{z}_3
\end{align*} \tag{25}\]

where \(\overline{z}_i \) (\(i = 1, 2, 3 \)) are at most functions of time, \(t \). One can easily show that \(f(y, t) \) and \(g(x, t) \) are the rigid body displacements which vanish in a plate if boundary conditions at its edges rule out rigid body motion. Henceforth, we assume that the case. Substituting from Eq. (23) (with \(f = g = 0 \)) into Eqs. (2a) and (2b) we get
\[
\begin{align*}
u(x, y, z, t) &= (z_0 - z) \frac{\partial w_0}{\partial x}, \\
\nu(x, y, z, t) &= (z_0 - z) \frac{\partial w_0}{\partial y}
\end{align*} \tag{26a, b}\]

Thus the physical neutral surface of the FGM plate [14,24] is given by \(z = z_0 \). By using Eq. (26), or the definition of the physical neutral surface, one can uncouple governing Eq. (14) instead of eliminating the in-plane displacements from Eqs. (11)–(13). It should be noted that Eqs. (18)–(20) together with the constraint \(A_{11}B_{12} = A_{12}B_{11} \) must hold for the physical neutral surface to exist. Therefore, if either the boundary conditions at the plate edges constrain the in-plane displacements or geometric nonlinearities are considered the material inhomogeneity is such that \(A_{11}B_{12} \neq A_{12}B_{11} \), then Eq. (26) cannot be derived.

Substituting from Eq. (23) into Eq. (3) and assuming that the Poisson ratio is constant through the plate thickness, we can express bending moments in terms of curvatures as
\[
\begin{align*}
M_x &= -D^* \left(\frac{\partial^2 w_0}{\partial x^2} + \nu \frac{\partial^2 w_0}{\partial y^2} \right) \tag{27a} \\
M_y &= -D^* \left(\frac{\partial^2 w_0}{\partial y^2} + \nu \frac{\partial^2 w_0}{\partial x^2} \right) \tag{27b}
\end{align*}\]

Furthermore, substitution from Eq. (27) into equilibrium equations
\[
\frac{\partial M_x}{\partial x} + \frac{\partial M_y}{\partial y} = Q_x, \quad \frac{\partial M_x}{\partial y} + \frac{\partial M_y}{\partial x} = Q_y \tag{28a, b}\]
yields
\[
\begin{align*}
Q_x &= -D^* \frac{\partial}{\partial x} \nabla^2 w_0, \\
Q_y &= -D^* \frac{\partial}{\partial y} \nabla^2 w_0 \tag{28c, d}\end{align*}
\]

where \(Q_x \) and \(Q_y \) are the resultant shear forces per unit length along the \(x \) - and \(y \) -axes, respectively. In summary, we have derived Eqs. (14) and (26)–(28) for the FGM plate which are the same as those for the RHP when \(D^* \) is replaced by \(D_h \). Of course, the boundary conditions for the two plates must also have similar correspondence.

3 Correspondence Relations Between Solutions for the FGM Plate and the RHP

3.1 Static Bending. For static bending of a plate, we have \(w_0(x, y, t) = w(x, y) \) and Eq. (14) reduces to
\[
\frac{D_h}{c} \nabla^4 w = q \tag{29}\]

For \(c = 1 \), Eq. (29) is the governing equation of the RHP subjected to the same loading as the FGM plate. If \(\bar{w}_h(x, y) \) is the particular solution of Eq. (29) for \(c = 1 \) and the specified boundary conditions, then
\[
\bar{w}(x, y) = c \bar{w}_h(x, y) + \Phi(x, y) \tag{30}\]

where \(\bar{w}(x, y) \) is the solution for the FGM plate and the function \(\Phi(x, y) \) satisfies the differential equation \(\nabla^2 \Phi(x, y) = 0 \) and the associated homogeneous boundary conditions. The theory of linear differential equations with the homogeneous boundary conditions gives \(\Phi(x, y) = 0 \). Thus, we have \(w(x, y) = c \bar{w}_h(x, y) \), where the scaling factor \(c \) is given by Eq. (17). We note that solutions of Chi and Chung [10] for the deflection of the simply supported rectangular FGM plate satisfy Eq. (30).

3.2 Static Buckling. For the static buckling of an FGM plate, Eq. (15) becomes
\[
\nabla^4 w + \frac{cP}{D_h} \left(\overline{\lambda}_1 \frac{\partial^2 w}{\partial x^2} + 2\overline{\lambda}_1 \frac{\partial^2 w}{\partial x \partial y} + \overline{\lambda}_2 \frac{\partial^2 w}{\partial y^2} \right) = 0 \tag{31}\]

where the initial in-plane membrane forces can be independently determined by solving prebuckling deformations of the plate. We assume that the in-plane loads are such that
\[
N_{0x} = \lambda_1 P, \quad N_{0y} = \lambda_2 P, \quad N_{0xy} = \lambda_3 P \tag{32}\]

where \(P \) is a load parameter and \(\overline{\lambda}_i \) (\(i = 1, 2, 3 \)) are scaling constants. Substitution from Eq. (32) into Eq. (31) yields
\[
\nabla^4 w + \frac{cP}{D_h} \left(\overline{\lambda}_1 \frac{\partial^2 w}{\partial x^2} + 2\overline{\lambda}_1 \frac{\partial^2 w}{\partial x \partial y} + \overline{\lambda}_2 \frac{\partial^2 w}{\partial y^2} \right) = 0 \tag{33}\]

For \(c = 1 \), Eq. (33) reduces to
\[
\nabla^4 w_h + \frac{P_{hcr}}{D_h} \left(\overline{\lambda}_1 \frac{\partial^2 w_h}{\partial x^2} + 2\overline{\lambda}_1 \frac{\partial^2 w_h}{\partial x \partial y} + \overline{\lambda}_2 \frac{\partial^2 w_h}{\partial y^2} \right) = 0 \tag{34}\]

that governs the buckling of the RHP. If \(P_{hcr} \) is a critical buckling load for the RHP, or the minimum eigenvalue of differential
Eq. (34) with the prescribed boundary conditions and \(\bar{w}_{\text{hcr}} \) is the corresponding buckling mode shape, then the similarity between Eqs. (33) and (34) gives
\[
\bar{w}_c = c \bar{w}_{\text{hcr}}, \quad P_c = P_{\text{hcr}} / c \tag{35}
\]
where \(P_c \) and \(\bar{w}_c \) are the critical buckling load and the related mode shape of the FGM plate.

3.3 Free Vibration

Setting \(q = N_00 = N_{b0} = N_{c0} = 0 \) in Eq. (15) yields the equation of motion for free vibrations of the FGM plate. Furthermore, assuming a harmonic response of the system given by
\[
w_0(x, y, t) = \bar{w}(x, y) \cos \omega t \tag{36}
\]
and substituting it into Eq. (15) yields the following equation governing the mode shape \(\bar{w} \):
\[
\nabla^4 \bar{w} - \omega^2 \bar{c}_p \rho_b \bar{w} = 0, \quad \bar{c}_p = \bar{c}_0 \tag{37}
\]
Here, \(\omega \) is a natural frequency of the FGM plate. For \(\bar{c}_p = 1 \), Eq. (37) reduces to the following governing equation for the RHP:
\[
\nabla^4 \bar{w}_h - \omega_h^2 \rho_b \bar{w}_h = 0 \tag{38}
\]
Here \(\omega_h \) is a natural frequency of the RHP. The similarity between Eqs. (37) and (38) yields
\[
\bar{w} = \bar{c} \bar{w}_h, \quad \omega = \omega_h / \sqrt{\bar{c}_p} \tag{39}
\]

3.4 Discussion of Boundary Conditions

When homogeneous essential boundary conditions (i.e., either \(\partial \bar{w}_b / \partial x \) or \(\partial \bar{w}_b / \partial y \) or their linear combination) are prescribed at an edge then both \(\bar{w}_b(x, y) \) and \(\bar{w}(x, y) \) will satisfy them.

Natural boundary conditions involve specifying either the bending moments or the resultant shear forces. Substitution of \(\bar{w}_0 = \bar{w} = \bar{c} \bar{w}_h \) into Eqs. (27) and (28) yields
\[
M_x = M_{hx}, \quad M_y = M_{hy}, \quad M_{xy} = M_{hxy} \tag{40a,b,c}
\]

4 Example Problems

In this section, numerical results for the FGM plate (FGMP) are presented to show the validity of the proposed correspondence between quantities for the FGMP and those for the RHP. It is assumed that the FGMP is composed of a ceramic (alumina) and a metal (aluminum) with the function \(\psi_p(z) \) in Eq. (1) given by
\[
\psi_p = 1 + \left(\frac{P_f}{F_p} - 1 \right) \left(\frac{1}{z} \right)^n \tag{43}
\]
where \(n \) is the material gradient parameter having values in the interval \([0, \infty)\). The Poisson ratio is assumed to be constant, \(\nu = 0.3 \). Values assigned to Young’s modulus and the mass density are \([9, 14] \)
ceramic (alumina): \(E_c = E_c = 380 \text{GPa}, \rho_c = \rho_c = 3800 \text{kg/m}^3 \)
metal (aluminum): \(E_m = E_m = 70 \text{GPa}, \rho_m = \rho_m = 2707 \text{kg/m}^3 \)

Substituting for functions \(\psi_E(z) \) and \(\psi_p(z) \) from Eq. (43) into Eqs. (5) and (16) yields
\[
\phi_0 = 1 + \frac{r_E - 1}{n + 1}, \quad \phi_1 = \frac{n(r_E - 1)}{2(n + 1)(n + 2)}, \quad \phi_2 = 1 + \frac{3(r_E - 1)(n^2 + n + 2)}{(n + 1)(n + 2)(n + 3)}, \quad \phi_0 = 1 + \frac{r_E - 1}{n + 1} \tag{44}
\]
where \(r_E = E_c / E_m, \rho_c = \rho_m / \rho_m \). Substitution from Eq. (44) into Eqs. (17) and (37) gives the transition parameters, \(c \) and \(c_p \), as

Table 1 Values of the dimensionless coefficients \(\phi_i (i = 0, 1, 2) \), \(\phi_0 \), \(c \), and \(c_p \) for specified values of the material gradient index, \(n \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>10</th>
<th>100</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi_0)</td>
<td>5.4286</td>
<td>3.9524</td>
<td>2.143</td>
<td>2.1071</td>
<td>1.7381</td>
<td>1.5536</td>
<td>1.4026</td>
<td>1.0438</td>
<td>1.0438</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>0</td>
<td>0.2952</td>
<td>0.3691</td>
<td>0.3321</td>
<td>0.2636</td>
<td>0.2153</td>
<td>0.1678</td>
<td>0.0215</td>
<td>0</td>
</tr>
<tr>
<td>(\phi_2)</td>
<td>5.4286</td>
<td>3.7837</td>
<td>2.143</td>
<td>2.5500</td>
<td>2.2653</td>
<td>2.0702</td>
<td>1.8671</td>
<td>1.1265</td>
<td>1</td>
</tr>
<tr>
<td>(\phi_0)</td>
<td>1.4038</td>
<td>1.2692</td>
<td>1.2019</td>
<td>1.0099</td>
<td>1.0673</td>
<td>1.0505</td>
<td>1.0367</td>
<td>1.0040</td>
<td>1</td>
</tr>
<tr>
<td>(c)</td>
<td>0.1842</td>
<td>0.2842</td>
<td>0.3696</td>
<td>0.5204</td>
<td>0.5601</td>
<td>0.5840</td>
<td>0.6149</td>
<td>0.8919</td>
<td>1</td>
</tr>
<tr>
<td>(c_p)</td>
<td>0.5085</td>
<td>0.6006</td>
<td>0.6665</td>
<td>0.7569</td>
<td>0.7731</td>
<td>0.7833</td>
<td>0.7984</td>
<td>0.7984</td>
<td>1.9643</td>
</tr>
</tbody>
</table>

Table 2 Dimensionless deflections at the centroid of a simply supported square FGM plate under either a transverse uniform distributed load, \(q_0 \), or a concentrated force, \(F \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>0.2</th>
<th>0.5</th>
<th>1</th>
<th>3</th>
<th>10</th>
<th>100</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{w}_{Dh} \times 10^3)</td>
<td>0.7483</td>
<td>0.9127</td>
<td>1.1543</td>
<td>1.5012</td>
<td>1.9238</td>
<td>2.1137</td>
<td>2.4976</td>
<td>3.6230</td>
</tr>
<tr>
<td>(\bar{q} \times 10^4)</td>
<td>0.7483</td>
<td>0.9127</td>
<td>1.1544</td>
<td>1.5013</td>
<td>1.9239</td>
<td>2.1138</td>
<td>2.4977</td>
<td>3.6232</td>
</tr>
<tr>
<td>(\bar{w}_{Dh} \times 10^3)</td>
<td>2.1371</td>
<td>2.6066</td>
<td>3.2968</td>
<td>4.2876</td>
<td>5.4947</td>
<td>6.0370</td>
<td>7.1333</td>
<td>10.348</td>
</tr>
<tr>
<td>(\bar{F} \times 10^4)</td>
<td>2.1371</td>
<td>2.6066</td>
<td>3.2968</td>
<td>4.2876</td>
<td>5.4947</td>
<td>6.0370</td>
<td>7.1333</td>
<td>10.348</td>
</tr>
</tbody>
</table>

\(^a \) By Eq. (30).
\(^b \) By FEM; \(\bar{w}_c \) is deflection at the plate centroid.
functions of the power index, \(n \). Values of coefficients \(/i \) \(i = 0, 1, 2 \) and \(/C22 \) for some values of \(n \) are listed in Table 1.

In Table 2, dimensionless centroidal deflections for different values of \(n \) of a simply supported square FGM subjected to either uniformly distributed load, \(q_0 \), or concentrated force, \(F \), at the plate center computed by two methods are compared. In Table 3, dimensionless centroidal deflections of a thin circular FGM plate under axisymmetric bending subjected to either uniformly distributed load and computed by using the correspondence relation are compared with those available in the literature [24,30,31] for the circular FGM plate with \(R \) being the radius of the circular plate. Excellent agreement between the present results and those in the literature shows the validity of Eq. (30) for giving an accurate bending solution of an FGM plate in terms of that of the RHP.

Another example problem studied is the buckling of a rectangular FGM plate with length \(a \), width \(b \), and thickness \(h \) subjected to in-plane compressive forces \(k_1P \) and \(k_2P \) in the \(x \) - and \(y \)-directions, respectively, as shown in Fig. 1. In Table 4, we have listed the critical buckling load, \(P_{cr} \), of the FGM plate subjected to the corresponding boundary conditions obtained from Eq. (35), the FEM and the Levy analytical solution [9], respectively. It is clear that results from Eq. (35) agree well with those given by the two other approaches.

Finally, we study free vibration of a square FGM. In order to show the validity of the correspondence relation for the frequencies, the first five dimensionless frequencies of the square FGM

<table>
<thead>
<tr>
<th>(n)</th>
<th>Clamped</th>
<th>Roller-supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.525</td>
<td>5.525</td>
</tr>
<tr>
<td>2</td>
<td>1.388</td>
<td>1.389</td>
</tr>
<tr>
<td>4</td>
<td>1.269</td>
<td>1.269</td>
</tr>
<tr>
<td>6</td>
<td>1.208</td>
<td>1.208</td>
</tr>
<tr>
<td>8</td>
<td>1.169</td>
<td>1.169</td>
</tr>
<tr>
<td>10</td>
<td>1.143</td>
<td>1.143</td>
</tr>
<tr>
<td>20</td>
<td>1.080</td>
<td>1.080</td>
</tr>
<tr>
<td>30</td>
<td>1.056</td>
<td>1.056</td>
</tr>
<tr>
<td>40</td>
<td>1.043</td>
<td>1.043</td>
</tr>
<tr>
<td>50</td>
<td>1.034</td>
<td>1.034</td>
</tr>
<tr>
<td>100</td>
<td>1.018</td>
<td>1.018</td>
</tr>
<tr>
<td>105</td>
<td>1.000</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3 Comparison of dimensionless centroidal deflection, \(W_0 = 64D_0/(q_0R^4w_0) \), of circular FGM plates obtained by Eq. (30) with those in the literature \((E_t/E_b = 0.396, v_{ty} = v_{ty} = 0.288) \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 0)</th>
<th>(\lambda_1 = 1, \lambda_2 = 1, \lambda_3 = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEM</td>
<td>Equation (35)</td>
</tr>
<tr>
<td>SSSS</td>
<td>0</td>
<td>2.1444</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.3727</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.0689</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.6842</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.8341</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.5339</td>
</tr>
<tr>
<td>SCSC</td>
<td>0</td>
<td>2.6381</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.6359</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.3149</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.3138</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.0261</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>1.0252</td>
</tr>
<tr>
<td>SFSF</td>
<td>0</td>
<td>1.3376</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.3271</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.6667</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1631</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.5202</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.1272</td>
</tr>
</tbody>
</table>

*Higher buckling mode.
with the SSSS and SCSC boundary conditions, obtained from Eq. (39), the FEM and that computed using the nonuniform rational B-spline basis functions [14] are presented in Table 5 for some values of n. It is obvious that results from Eq. (39) match well with those deduced from the other two approaches.

5 Remarks

The correspondence relations (30), (35), and (39) enable one to determine global quantities for an FGM plate from those of the corresponding RHP. However, local stresses in an FGM plate are not determined from those of the RHP. Since more than one through-the-thickness distribution of material properties can give us the same values of the parameter c defined by Eq. (17), therefore different FGM plates can have the same global response even though through-the-thickness stress distributions and the maximum principal stresses in them are quite different. Thus values of the local quantities will need to be determined from knowledge of the precise spatial variations of material parameters.

6 Conclusions

We have used the CPT to analytically deduce the exact proportional relations between solutions for bending, buckling and free vibration of the FGM plates with an arbitrary through-the-thickness variation in the material properties and those of the RHP of the same geometry, loadings and boundary conditions as the FGM plate. Thus, solutions for isotropic FGM and other inhomogeneous (e.g., laminated) isotropic plates can be derived from those of the corresponding homogeneous plates available in the literature. However, a physical neutral surface for the FGM plates exists provided that bending and stretching stiffnesses satisfy a condition, the Poisson ratio is constant, and there are no in-plane forces induced by the boundary conditions.

Acknowledgment

SRL’s work was supported by the National Natural Science Foundation of China Grant No. 11272278. RCB’s work was partially supported by the U.S. Office of Naval Research Grant No. N00014-11-1-0594 to Virginia Polytechnic Institute and State University with Dr. Rajapakse as the Program Manager. The authors gratefully acknowledge the financial support received for the work.

References

Table 5 The first five dimensionless frequencies ($\Omega = \sqrt{a^2 / h} \sqrt{p_d / E_p}$) of a thin square FGM with SSSS and SCSCS edges for specified values of the gradient index n

<table>
<thead>
<tr>
<th>Modes</th>
<th>Source</th>
<th>$n = 0.0$</th>
<th>$n = 0.5$</th>
<th>$n = 1.0$</th>
<th>$n = 2.0$</th>
<th>$n = 0.0$</th>
<th>$n = 0.5$</th>
<th>$n = 1.0$</th>
<th>$n = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>FEM</td>
<td>29.361</td>
<td>24.861</td>
<td>22.402</td>
<td>20.367</td>
<td>24.861</td>
<td>32.575</td>
<td>27.584</td>
<td>22.593</td>
</tr>
<tr>
<td>3</td>
<td>FEM</td>
<td>29.361</td>
<td>24.861</td>
<td>22.402</td>
<td>20.367</td>
<td>24.861</td>
<td>32.575</td>
<td>27.584</td>
<td>22.593</td>
</tr>
<tr>
<td>4</td>
<td>FEM</td>
<td>46.966</td>
<td>39.768</td>
<td>35.835</td>
<td>32.580</td>
<td>46.966</td>
<td>39.768</td>
<td>35.835</td>
<td>32.580</td>
</tr>
<tr>
<td></td>
<td>[14]</td>
<td>46.971</td>
<td>39.773</td>
<td>35.839</td>
<td>32.584</td>
<td>46.971</td>
<td>39.773</td>
<td>35.839</td>
<td>32.584</td>
</tr>
<tr>
<td></td>
<td>Equation (39)</td>
<td>46.986</td>
<td>39.786</td>
<td>35.850</td>
<td>32.594</td>
<td>46.986</td>
<td>39.786</td>
<td>35.850</td>
<td>32.594</td>
</tr>
<tr>
<td>5</td>
<td>FEM</td>
<td>58.722</td>
<td>49.723</td>
<td>44.804</td>
<td>40.735</td>
<td>58.722</td>
<td>49.723</td>
<td>44.804</td>
<td>40.735</td>
</tr>
<tr>
<td></td>
<td>[14]</td>
<td>58.712</td>
<td>49.714</td>
<td>44.798</td>
<td>40.729</td>
<td>58.712</td>
<td>49.714</td>
<td>44.798</td>
<td>40.729</td>
</tr>
<tr>
<td></td>
<td>Equation (39)</td>
<td>58.733</td>
<td>49.732</td>
<td>44.813</td>
<td>40.743</td>
<td>58.733</td>
<td>49.732</td>
<td>44.813</td>
<td>40.743</td>
</tr>
</tbody>
</table>